B: Interpreting Graphs

Given a linear relation in graph form you must be able to:

1. Interpolate values 1. Find values between known values.

2. Extrapolate values 1> find values outside of the given values.

* Vou can only interpolate/extrapolate if it is "okay" to have values inbetween values.

Use Worksheet 6.2 in order to complete the following examples. Then finish Page 226 #4-11. All.

6.2 Interpreting Graphs

Use for Examples.

MathLinks 9, pages 220-230

Key Ideas Review

For #1, unscramble the letters to form a word that correctly completes the sentence.

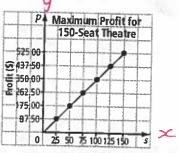
- 1(a) When values are found on a graph within a known range of values, this is called interpolation LTNNPTIEOOARI
 - b) To find a value on a graph that is beyond the known range of values on a graph is called extrapolation.
 PNALARXETITOO

the known range of values.

 c) On the graph to the right, find the value that corresponds with 3.5 h worked. This practice is called because the values are found LTNNPTIEOOARI known values in a set. **NETEBEW**

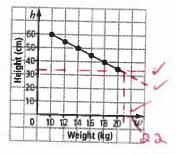
PNALARXETITOO

17 00 d) On the same graph, find the value that corresponds with 10 h worked. This _ because the values are found


W Wage Per Hours Worked

Check Your Understanding

practice is called _


2. Is it reasonable to interpolate and extrapolate values from the graph? Explain.

ENDYOB

* It is reasonable to interpolate but only for whole numbers.

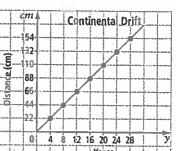
. It is unreasonable to extrapolate because no values faist entside the **72** MHR • Chapter 6 978-007-097344-2 3. The graph shows a relationship between weight and height jumped.

What is the approximate value of the w-coordinate when h = 32 cm? Which method did you use to determine the

When h= 32; W& 21 kg. Extrapolation.

L	Fuel Consumption at an Average	225 km				
50	Speed of 90 km/h	90 Km/h				
9 40 30		2.5 h x60				
20-						
0	30 60 90 120 150 180 2 0 772	=150 min				
	Time (m)					

 a) Is it reasonable to extrapolate data from this graph? Explain. Yes but only in the positive "x"


b) Approximately how much fuel has been used to travel 225 km? L= 26 l (left) 50-26

 A spring is compressed after weights are placed on it. The spring fully compressed is 12 cm long and fully extended is 40 cm long.

	m.		9	pr	ing	Co	mp	res	sio	n	
5	34-	ļ	1	Ĺ,	L	_	ļ			_	
=	28-			_		ļ			ļ 		
Height	22.		-		<u> </u>						
-2-	16		ļ	_	ļ		'		L		
Spring	10		-	-	-	_	1	-			
10	-				!	1	-				
-	0		5 1	0 1	5 2	D 2	5 3	0 3	5 4	0	kg
		L		1	Neig	jht	(kg				

- a) Is it reasonable to extrapolate data from this graph? Explain.
- b) What weight fully compresses the spring?
- c) When a 25-kg weight is placed on the spring, what is the spring's length?

6. Continental drift occurs at a rate of about 1 cm to 10 cm per year. Assuming an average movement of 5.5 cm per year, use the graph to answer the following questions.

- a) Approximately how long will it take the plate to move 2 m?
- b) After 17 years, approximately how far will the plate have moved? Which method did you use to determine your answer?
- 7. The table of values represents the dosage of a medicine needed by body weight. depends on 1 x

Weight, kg 18 32 46 60 75 Dosage, mg 60 90 105

a) Plot the linear relation on a graph,

b) From the graph, determine the approximate dosage needed for weights of 40 kg and 100 kg.

40 Kg ~ 82 mg

c) From the graph, determine the approximate weights needed for dosages of 50 mg and 120 mg.